Flux Blockchain Evolution Proposal

PoUW v.2 White Paper

The Decentralized Computational Network Blockchain-As-A-Service Solutions Built on the Blockchain

From Proof-of-Work to Proof-of-Useful-Work (PoUW v.2) and Node-Centric Infrastructure

Written and maintained by: InFlux Technologies Authors: Daniel Keller, Tadeas Kamenta, Jeremy Anderson, Valter Silva

Contents

1	Abstract	3
2	Problem with the Current GPU Mining Mechanism 2.1 Environmental and Economic Inefficiency 2.2 Centralization Risks 2.3 Lack of Useful Work Output	3 3 3
3	Proposed Shift to Proof of Useful Work V.2 (PoUW) 3.1 Conceptual Framework	4
	3.2 PoUW Node-Centric Model	4
4	Elimination of Mining Pools 4.1 Parallel Assets Transition	4
5	Tokenomics and Rewards Overhaul 5.1 Block Reward Reallocation	5 6 6 6
6	Annual Reduction Model (10% decrease per year)	6
7	Technical Enhancements 7.1 30-Second Block Times	8
8	Economic Impact and Decentralization Balance	9
9	Summary of Key Proposed Changes	9
10	FluxNode Network Growth Projections 10.1 Network Computing Capacity Expansion	10 10
11	Implementation Roadmap	11
12	Economic Model Deep Dive12.1 Key Assumptions	12 12 12 12
13	Development Fund Growth	14
14	Supply Projection with 10% Annual Reduction	14
15	Deflationary, Locking, and Burn Mechanics	15
16	Resource-Based Economics with 30-Second Blocks 16.1 Executive Summary	15 15 15 17

	16.5 Critical Requirements Validation	18
17	Block Distribution Model 17.1 NEW MODEL: Guaranteed payouts every block (14.0 FLux total) 17.2 Economic Impact Analysis - Multi-Node Scenarios (8 nodes per IP) 17.3 30-Second Block Revolution	18
18	Application Deployment Tiers18.1 Cumulus (Lightweight Applications)	19
19	Economic Effects19.1 Reduced Sell Pressure19.2 Improved Token Velocity19.3 Enterprise and Institutional Confidence	20
20	Summary: Why This Model Works	21
21	Conclusion	21
22	Technical Overview Conclusion	21

1 Abstract

FLUX, the world's most decentralized compute network, has continually evolved to meet the needs of modern Web3, AI, and DePIN infrastructure. As we look toward the future, we must shift away from legacy blockchain mechanics that no longer serve the ecosystem's vision of decentralization, sustainability, scalability, and utility.

This proposal outlines a transformative evolution of the Flux blockchain: **repurposing GPU mining**, adopting a **Proof-of-Useful-Work (PoUW v.2)** model rooted in FluxOS Node operations, increasing rewards for node operators, and aligning tokenomics with long-term decentralization and service utility. **These changes will activate at block height 2,000,000**, ensuring a precise, network-wide transition. The changes aim to enhance scalability, reduce environmental impact, and improve economic sustainability for the entire Flux ecosystem.

2 Problem with the Current GPU Mining Mechanism

2.1 Environmental and Economic Inefficiency

- Energy Consumption: GPU mining consumes excessive electricity, often derived from non-renewable sources, contributing to global carbon emissions
- Hardware Waste: Hardware lifecycles are shortened due to mining stress, generating significant electronic waste
- Market Impact: Mining creates artificial scarcity in GPU markets, harming gaming, AI research, and content creation industries

The industry's environmental impact, driven by the rapid growth of AI and increasing demand for computing, is **unsustainable and inefficient**. As computation needs are challenging to quantify or predict, and the current infrastructure is static while usage is dynamic, this leads to significant inefficiencies and increased energy consumption.

Without adaptive, demand-aware infrastructure, the industry will struggle to scale efficiently, and its carbon footprint will continue to grow exponentially.

2.2 Centralization Risks

- Geographic Concentration: Mining power is disproportionately concentrated in regions with access to cheap electricity
- Pool Consolidation: Mining pools consolidate power, undermining the principles of decentralization
- Parallel Asset Issues: Parallel Assets are currently handled at the pool level, leading to centralization and challenges with consensus and xDAO

2.3 Lack of Useful Work Output

Unlike FluxOS Nodes, which provide **real-world services** (compute, storage, orchestration), current GPU mining yields **no productive external output**.

3 Proposed Shift to Proof of Useful Work V.2 (PoUW)

3.1 Conceptual Framework

We propose a shift from **Proof-of-Work (PoW)** to **Proof-of-Useful-Work v.2 (PoUW)**, a sustainable, decentralized alternative in which block production is validated by FLUXOS Nodes that run full FLUXOS and participate in the active network.

3.2 PoUW Node-Centric Model

- All block validation and production will be handled by FluxOS Nodes (Cumulus, Nimbus, and Stratus)
- FluxOS Nodes must run full daemons and meet benchmark standards
- Block rewards are **primarily distributed to FluxOS Nodes**, reinforcing the node economy and driving infrastructure growth

3.3 Why PoUW, Not PoS

- PoS Limitations: While PoS is energy-efficient, it can lead to wealth-based centralization
- PoUW Advantages: Ensures decentralization by requiring operational infrastructure rather than mere token staking
- Trust & Neutrality: Maintains trust, neutrality, and useful output
- Decentralization: PoS is inherently centralized; PoUW v.2 is not
- **Deterministic Security**: PoUW is secured by proof of FluxOS Nodes a deterministic decentralized nodes system that validates both network consensus and useful work

4 Elimination of Mining Pools

With the removal of traditional mining, all mining pool infrastructure will be deprecated. This:

- Simplifies network architecture
- Reduces points of failure or potential exploitation
- Eliminates need for intermediaries to distribute block rewards
- Includes all Parallel Asset Mining (can now be directly claimed)
- Enables more decentralized and streamlined distribution of Parallel Assets

4.1 Parallel Assets Transition

At Block Height 2,000,000:

- The majority of Parallel Assets (PAs) will have been mined
- Remaining supply per PA chain: 2,449,214.05009 tokens
- These remaining PAs will continue to be mined using standard methods (not through pools)

Timeline for PA Completion:

- 2025-2028: Remaining PAs gradually mined out
- Post-2028: Pure Flux main chain economy
- Long-term: Only FluxOS Node rewards remain as the primary token emission source

5 Tokenomics and Rewards Overhaul

5.1 Block Reward Reallocation

Recipient Group	Allocation Per Block	Percentage	Function
Cumulus Nodes	1.0 Flux	7.1%	Block validation, hosting lightweight applications
Nimbus Nodes	3.5 Flux	25.0%	Block validation, hosting mid-tier applications
Stratus Nodes	9.0 Flux	64.3%	Block validation, hosting enterprise applications
Development Fund	0.5 Flux	3.6%	Development, ecosystem growth, and dual mining incentives (up to 20% for FLUX Edge)

Table 1: Block Reward Allocation

Total Block Reward: 14.0 Flux per block

 $\it Note$: These figures completely replace mining and PA reward allocations. One node from each tier is rewarded per block.

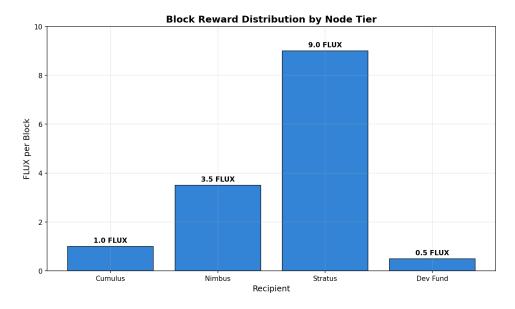


Figure 1: Block Reward Distribution by Node Tier

5.2 Cirrus (Titan) Staking Synergy

- Enhanced rewards for node operators will also increase staking returns on Titan
- More Flux will be locked in Titan, reducing circulating supply and price volatility

5.3 Gradual Annual Reduction Model

We propose replacing the current halving model with a **smooth 10% annual reduction** in block rewards.

Reduction Schedule: Every 1,051,200 blocks ($720 \times 4 \times 365 = \text{annual cycle with } 30\text{-second blocks}$)

Benefits:

- Ensures predictability and stability for node operators and enterprise clients
- Avoids sudden 50% reward drops that halvings create
- Provides infrastructure continuity and prevents mass node departures
- Deterministic timing: Reductions occur at precise block heights, not calendar dates

5.4 Flux Edge Dual Mining Integration

GPUs deployed on the **FLUX Edge platform** will qualify for dual mining rewards through the development fund allocation. **Up to 20%** of the development fund (0.1 FLUX per block) will be allocated to incentivize compute providers who contribute GPU resources to the FLUX Edge platform while simultaneously mining other assets.

6 Annual Reduction Model (10% decrease per year)

Reduction Interval: Every 1,051,200 blocks (equivalent to one year with 30-second blocks)

Year	Block Range	Height	Annual Emissions	Block Reward	Inflation Rate	Notes
2025	2,000,000 3,051,199	-	29.4M FLUX (14.7M main + 14.7M PAs)	14.0 Flux/block + PAs	7.51%	PoUW activation, remaining PAs: 2.45M per chain
2026	3,051,200 $4,102,399$	-	\sim 26.5M Flux (main + PAs)	$12.6~\mathrm{FLux/block}~+~\mathrm{PAs}$	6.31%	10% reduction, PA mining continues
2027	$4,102,400 \\ 5,153,599$	-	\sim 18M Flux (main + remaining PAs)	$\begin{array}{cc} 11.34 & Flux/block \\ + PAs \end{array}$	4.05%	PAs nearly depleted
2028	5,153,600 6,204,799	-	10.72M FLUX (main only)	$10.21~\mathrm{Flux/block}$	2.35%	Transition to node-only rewards, PAs exhausted
2029	6,204,800 7,255,999	-	9.65M Flux	$9.19 \; \mathrm{Flux/block}$	2.07%	Pure PoUW economy established
2030	7,256,000 8,307,199	-	8.68M Flux	$8.27 \; \mathrm{Flux/block}$	$\boldsymbol{1.82\%}$	Long-term sustainability phase
2031- 2035	8,307,200+	-	$7.81\mathrm{M} ightarrow 5.02\mathrm{M} \; \mathrm{Flux}$	$7.44 \rightarrow 4.78$ FLUX/block	$\begin{array}{ccc} \textbf{1.60\%} & \rightarrow \\ \textbf{1.00\%} & \end{array}$	Continued 10% annual reductions
2036+	-		<5M FLUX/year	<4.8 Flux/block	<1.0 $%$	Approach to 560M max supply (2060)

Table 2: Annual Reduction Schedule

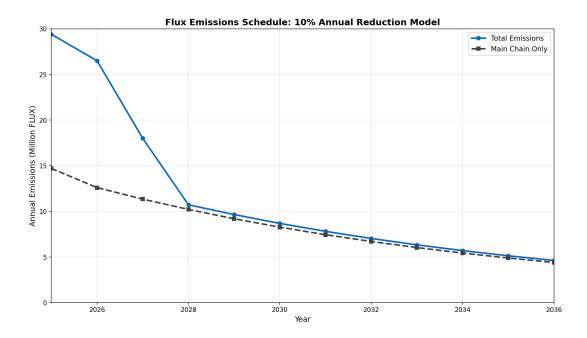


Figure 2: Flux Emissions Schedule: 10% Annual Reduction Model

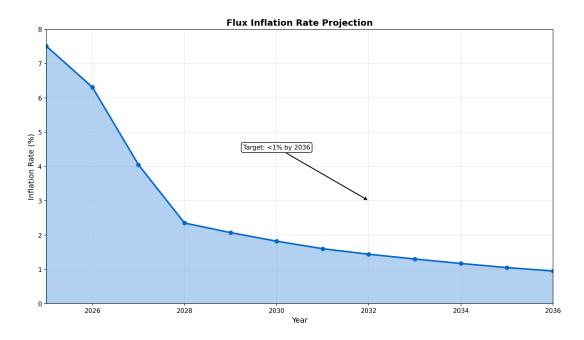


Figure 3: Inflation Rate Decline Toward Sustainable Levels

7 Technical Enhancements

7.1 30-Second Block Times

Current Issues:

- 2-minute block intervals are too slow for real-time dApp orchestration
- Irregularities occasionally cause delays of up to 20 minutes
- Unsuitable for Kubernetes-like orchestration demands

Proposed Solution: 30-second blocks Benefits:

- App registration and termination speed
- Faster node reward cycles
- Improved user and client experience
- 4x more earning opportunities daily

8 Economic Impact and Decentralization Balance

These changes are designed to:

- ✓ **Decrease selling pressure** by removing speculative mining
- ✓ Increase network utility and value via incentivized infrastructure
- ✓ **Provide greater reliability** for enterprise and government clients using Flux as a decentralized cloud backbone
- ✓ Encourage Cirrus (Titan staking) growth and long-term lock-up of Flux assets

9 Summary of Key Proposed Changes

Feature	Current System	Proposed Change	
Activation	N/A	Block Height 2,000,000 (precise transition)	
Mining Mechanism	GPU PoW	Node-based PoUW	
Block Production	Miners via pools	FLUXOS Nodes only (Cumulus, Nimbus, Stratus)	
Mining Pools	Required	Eliminated completely	
Block Rewards	Split (nodes/miners/PAs)	14 FLUX total $(1/3.5/9/0.5 \text{ per ties} + \text{dev fund})$	
Reward Schedule	Halving (every 2.5 yrs)	10% reduction every 1,051,200 blocks (annual)	
Block Time	$\sim 2 \text{ minutes}$	30 seconds (4x faster)	
Development Fund	None	0.5 Flux per block (ecosystem + Flux Edge)	
Titan Impact	Moderate staking yield	Higher staking incentives	
Infrastructure Usefulness	Low (mining)	High (node validation, app deployment)	
Network Emissions	High (GPU energy usage)	Low (node-level power efficiency)	

Table 3: System Comparison

10 FluxNode Network Growth Projections

The transition to PoUW v.2 is expected to drive significant growth in the FluxNode network as infrastructure becomes the primary source of network security and block validation.

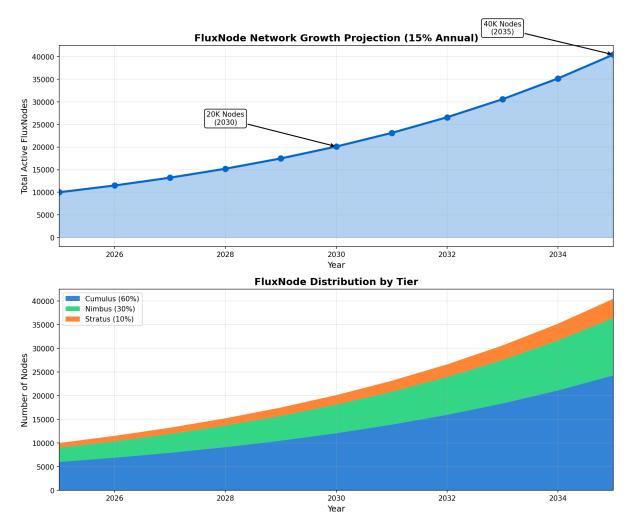


Figure 4: FluxNode Network Growth Projection: 15% Annual Growth Model

Our conservative growth model projects the network expanding from approximately 10,000 nodes in 2025 to over 40,000 nodes by 2035. This 4x growth is driven by:

- Increased block rewards making node operation more profitable
- Elimination of mining competition creating clearer ROI calculations
- 30-second blocks providing 4x more earning opportunities
- Enterprise adoption requiring more distributed infrastructure

10.1 Network Computing Capacity Expansion

As the FluxNode network grows, the total computing capacity available for decentralized applications scales dramatically:

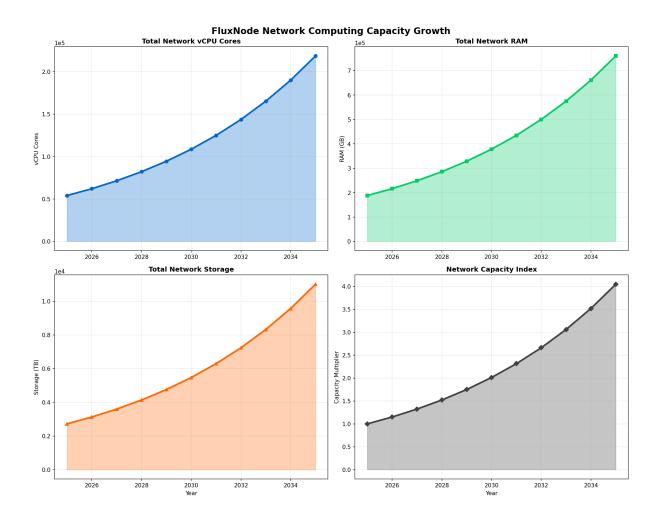


Figure 5: Total Network Computing Capacity Growth by 2035

By 2035, the projected network will provide:

- Over 400,000 vCPU cores for application deployment
- More than 1.2 million GB of RAM for real-time processing
- Approximately 32,000 TB of distributed storage
- 4x capacity index growth enabling enterprise-scale deployments

11 Implementation Roadmap

Activation Block Height: 2,000,000

All PoUW v.2 changes will activate automatically at **block height 2 million**, ensuring a precise, deterministic transition for the entire network.

Parallel Assets Status at Block 2M:

- At block height 2,000,000, the majority of Parallel Assets will have been mined
- Remaining per PA chain: 2,449,214.05009 tokens
- These remaining PAs will continue to be mined using standard methods
- Expected timeline: Remaining PAs will be fully mined within a few years

• Long-term: Only Flux main chain node reward income will remain

Phase	Timeline	Action Item	
Community	June – July 2025	Proposal release, feedback loop	
Review			
DevNet Integration	August 2025	Test PoUW chain upgrade	
PoUW Activa-	September 2025	Switch to PoUW consensus at block	
tion		2M	
Reward Re-	September 2025	Transition all rewards to FluxOS	
alignment		Nodes	
Titan Upgrade	October 2025	Reflect staking return changes	
Full Rollout	Q4 2025	FLUX blockchain fully running PoUW v.2	

Table 4: Implementation Timeline

12 Economic Model Deep Dive

12.1 Key Assumptions

- Total Supply at Block 2M: 440 million \$FLUX
- Circulating Supply at Block 2M: 391.7 million \$FLUX
- Remaining Parallel Assets: 2,449,214.05009 per PA chain at 2M blockheight
- Maximum Supply Cap: 560 million \$FLUX (reached ~2060)
- Node Count (as of June 2025): \sim 10,000 active FluxOS Nodes (Cumulus, Nimbus, Stratus)
- Titan Locked Flux: Significant and growing (~60–100M Flux)
- Target Inflation Rate: 7.51% initial (with PAs), dropping to 3.75% post-PA, then <1% by 2036
- Block Time Target: 30 seconds
- Annual Node Growth Rate Target: 10–15% (sustainable)

12.2 Core Design Principles

- 1. **Utility-Driven Inflation**: Emissions awarded only to active contributors (FluxOS Nodes, Direct Mining, and Titan participants)
- 2. **Incentive-Driven Deflation**: Mechanisms to burn, lock, or stake Flux to offset emissions
- 3. Long-Term Planning: Transition from halving to predictable, multi-year inflation schedules
- 4. **Service-Based Valuation**: Flux as a payment system for computing, bandwidth, storage, identity, and orchestration

12.3 Proposed Supply Model Overview

Category	Current	New PoUW Model	Notes	
Max Supply 440M Cap		560M	Final cap reached in approximately 34 years	
Annual Emissions	\sim 19.7M Flux	29.4M Flux initially (14.7M main + 14.7M PAs)	For node ops, development fund, ecosystem growth, includes PAs until depletion	
Block Time	120s	30s	4x more blocks per day; predictable wards	
Block Reward	\sim 37.5 Flux	14.0 FLUX	1.0/3.5/9.0/0.5 Flux per Cumulus/Nimbus/Stratus/Dev Fund	
Annual Inflation Rate	5.03% (19.7M/391.7M)	7.51% initial (29.4M/391.7M), drops to 3.75% post-PA	Includes PAs initially, then main chain only after PA depletion	
Reduction Schedule	Halving (2.5 years)	10%every 1,051,200 blocks	Smooth transition avoiding infrastructure shocks	
		Table 5: Supply Model Comparison	on	

13 Development Fund Growth

Annual allocation (0.5 FLUX per block = \sim 1.05M FLUX annually) creates a growing on-chain treasury that will:

- Fund developer grants and bounties (80% minimum allocation)
- Support education, marketing, and ecosystem outreach
- Allocate up to 20% for dual mining incentives on Flux Edge platform
- Enable sustainable ecosystem development and partnerships

Managed by the Flux Foundation with community oversight through XDAO governance.

14 Supply Projection with 10% Annual Reduction

Block Height	Year Approx	- Maximum Supply	Circulating Supply	Notes	
2M	2025	~440M	391.7M	PoUW v.2 activation, majority of PAs mined	
3M	2026	\sim 560M	419.7M	First full year of PoUW operations	
4M	2027	\sim 560M	444.2M	10% reduction cycles active	
5M	2028	\sim 560M	456.1M	Remaining PAs nearly depleted	
6M	2029	\sim 560M	466.8M	Node-only reward struc- ture established	
7M	2030	$\sim 560 \mathrm{M}$	476.5M	Mature PoUW network	
8M	2031	\sim 560M	$485.2\mathrm{M}$	Long-term sustainability phase	
9M	2032	\sim 560M	493.0M	Continued gradual emission reduction	
10M	2033	\sim 560M	500.0M	Approaching mature network economics	
~2060	2060	560M	~560M	Maximum supply cap reached	

Table 6: Supply Projection

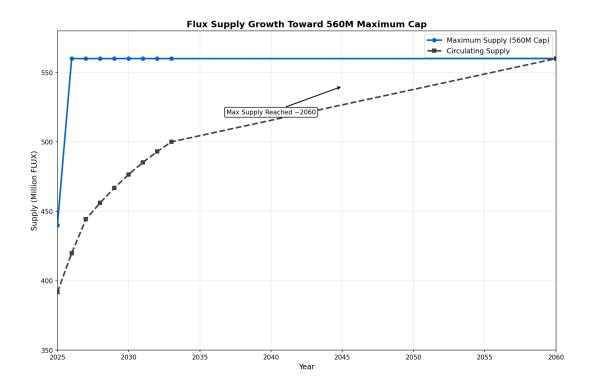


Figure 6: Flux Supply Growth Toward 560M Maximum Cap

15 Deflationary, Locking, and Burn Mechanics

Mechanism	Purpose	Impact
Titan Staking	Lock tokens for APY	Reduces the active circulating supply
Node Collateral	Require 1K / 12.5K / 40K FLUX	Long-term lockup, incentives for expansion
PRN Payments	Apps/clients pay in FLUX	Rewards to PRN nodes running on Arcane
Governance Slashing	Penalties for malicious node ops	Security and accountability

Table 7: Token Mechanics

16 Resource-Based Economics with 30-Second Blocks

16.1 Executive Summary

FLUXOS is transitioning to **node-only rewards** (no miners) with **30-second blocks** (4x faster). This analysis proposes a fair reward distribution based on actual network resources provided, ensuring critical requirements:

- \checkmark 2 Nimbus < 1 Stratus but 3 Nimbus > 1 Stratus
- \checkmark 3 Cumulus < 1 Nimbus but 4 Cumulus > 1 Nimbus

16.2 Current vs Proposed Rewards

Tier	Current Per Block	Proposed Per Block	Per Block Change	Daily Earning Power	Usable Application Resources
Cumulus	2.8125 Flux	1.0 Flux	-64%	+43% total (4x frequency)	3 vCPU, 6GB RAM, 140GB SSD for lightweight apps
Nimbus	4.6875 Flux	3.5 Flux	-25%	+200% total (4x frequency)	7 vCPU, 30GB RAM, 360GB SSD for mid-tier applications
Stratus	11.25 Flux	9.0 Flux	-20%	+220% total (4x frequency)	15 vCPU, 62GB RAM, 800GB SSD for enterprise applications

Table 8: Reward Comparison

Key Innovation: Ultra-simple ratios (1x, 3.5x, 9x) with massive daily earning increases due to 4x block frequency

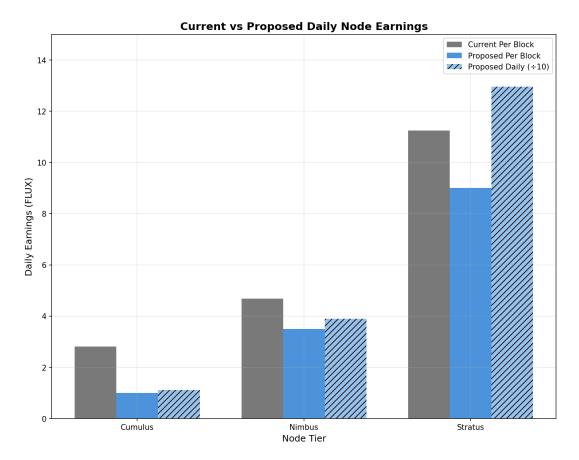


Figure 7: Node Tier Earning Comparison: Per Block and Daily Totals

16.3 The Math Behind Resource Valuation

Resource Scoring Formula (using established FLUXOS weights):

• **CPU**: 0.03 per 0.1 core

• **RAM**: 0.01 per 100MB

 \bullet Storage: 0.004 per GB

Calculated Scores:

• Cumulus: $(30 \times 0.03) + (60 \times 0.01) + (140 \times 0.004) = 2.06$

• Nimbus: $(70 \times 0.03) + (300 \times 0.01) + (360 \times 0.004) = 6.54 (3.17x \text{ Cumulus})$

• Stratus: $(150 \times 0.03) + (620 \times 0.01) + (800 \times 0.004) = 13.9 (6.75x \text{ Cumulus})$

16.4 Target Reward Ratios (Clean & Simple) - Total: 14.0 Flux/block

• Cumulus: 1.0 Flux (1 node paid per block)

• Nimbus: 3.5x Cumulus = $3.5 \times 1.0 = 3.5$ FLUX (1 node paid per block)

• Stratus: 9x Cumulus = $9 \times 1.0 = 9.0$ Flux (1 node paid per block)

• **Development Fund**: 0.5 Flux (ecosystem development + up to 20% Flux Edge dual mining)

Block Total: 1.0 + 3.5 + 9.0 + 0.5 = 14.0 **FLUX** (all three tiers + dev fund every block)

16.5 Critical Requirements Validation

✓ 2 Nimbus < 1 Stratus: $2 \times 3.5 = 7.0 < 9.0$

✓ 3 Nimbus > 1 Stratus: $3 \times 3.5 = 10.5 > 9.0$

 \checkmark 9 Cumulus = 1 Stratus: 9 × 1.0 = 9.0 = 9.0

 \checkmark 3 Cumulus < 1 Nimbus: 3 × 1.0 = 3.0 < 3.5

 \checkmark 4 Cumulus > 1 Nimbus: 4 × 1.0 = 4.0 > 3.5

Reward Ratios Analysis:

• Nimbus/Cumulus: 3.5/1.0 = 3.5x (perfect clean ratio)

• Stratus/Cumulus: 9.0/1.0 = 9.0x (perfect clean ratio)

17 Block Distribution Model

17.1 NEW MODEL: Guaranteed payouts every block (14.0 Flux total)

Every single block: 1 Cumulus (1.0) + 1 Nimbus (3.5) + 1 Stratus (9.0) + Dev Fund (0.5) = 14.0 FLUX

Benefits:

- ✓ 100% reliability: All three tiers get paid every 30 seconds
- ✓ **Perfect predictability**: Node operators know exactly when they'll be paid next
- ✓ **No queue waiting**: Guaranteed rotation through all nodes in each tier
- ✓ **Revolutionary change**: Guaranteed income stream for all tier operators
- ✓ Ecosystem growth: 0.5 Flux per block funds development and Flux Edge dual mining incentives

17.2 Economic Impact Analysis - Multi-Node Scenarios (8 nodes per IP)

Strategy	Investment	Current Daily	Proposed Daily	Improvement
8x Cumulus	8K FLUX + \$80- 150/mo	22.5 FLUX	32.0 FLUX	$1.4x (0.36x \text{re-} \\ \text{wards} \times 4x \\ \text{frequency})$
8x Nimbus	100 K FLUX + \$200-400/mo	37.5 FLUX	112.0 FLUX	3.0x (0.75x re- wards $\times 4x$ frequency)
4x Stratus	$\frac{160 \text{K FLux} + \$250\text{-}}{500/\text{mo}}$	45 Flux	144.0 Flux	$3.2x (0.8x \text{ rewards} \times 4x \text{ frequency})$

Table 9: Multi-Node Economic Impact

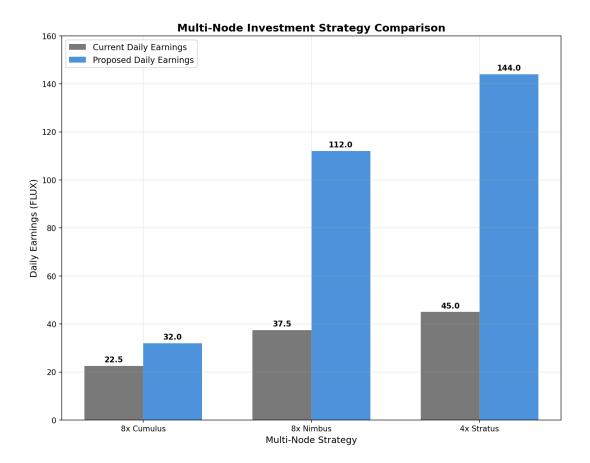


Figure 8: Economic Impact of Multi-Node Strategies (Current vs Proposed)

17.3 30-Second Block Revolution

- Current: 720 blocks/day, ~48-hour queue cycles
- Future: 2,880 blocks/day, ~12-hour queue cycles
- Impact: 4x more blocks = 4x more reward opportunities daily

Example: A Cumulus node earning 1 Flux gets 4x more earning opportunities per day

18 Application Deployment Tiers

18.1 Cumulus (Lightweight Applications)

- Resources Available For Apps: 3 vCPU, 6GB RAM, 140GB SSD
- Use Cases: Web apps, APIs, small databases, development environments
- Reward: 1.0 Flux (baseline tier)

18.2 Nimbus (Mid-Tier Applications)

- Resources Available For Apps: 7 vCPU, 30GB RAM, 360GB SSD
- Use Cases: Medium-scale applications, data processing, larger databases
- Reward: 3.5 Flux (3.5x progression)

18.3 Stratus (Enterprise Applications)

- Resources Available For Apps: 15 vCPU, 62GB RAM, 800GB SSD
- Use Cases: High-performance applications, AI/ML workloads, enterprise solutions
- Reward: 9.0 Flux (9x enterprise tier)

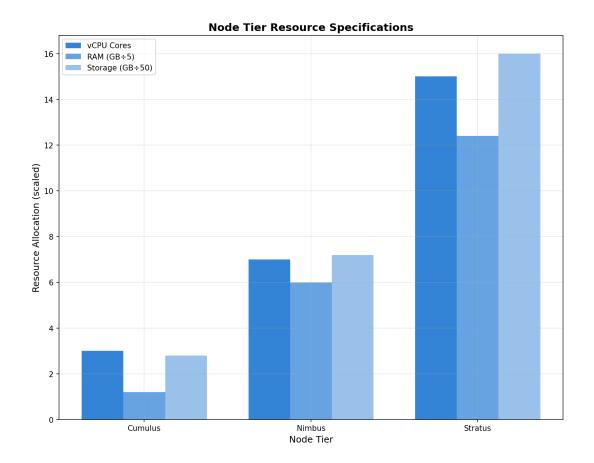


Figure 9: Hardware Resource Allocation by Node Tier

19 Economic Effects

19.1 Reduced Sell Pressure

- No more speculative mining rewards = less constant sell-side liquidity
- Node operators and stakers are more likely to compound their assets than sell them

19.2 Improved Token Velocity

- More tokens locked = higher utility per token for orchestration
- As demand for computing and storage grows, so does token throughput

19.3 Enterprise and Institutional Confidence

- The predictable token model encourages long-term integration and adoption
- Sustainable rewards attract infrastructure-scale partners

20 Summary: Why This Model Works

Objective	Achieved via
Scalability	More block throughput, predictable emissions
Decentralization	No mining pools, global FluxOS Node expansion
Eco-Friendly Infrastructure	End of waste mining, PoUW model
Incentivization	Higher rewards for node operators and stakers
Economic Alignment	Locking, burning, and real utility reward participation

Table 10: Model Objectives

21 Conclusion

This model transforms FluxOS economics through:

- ✓ Clean progression ratios: 3.5x and 9x multipliers for easy tier understanding
- ✓ **Development fund integration**: 0.5 Flux per block for ecosystem growth and Flux Edge dual mining
- ✓ Smooth economic transition: 10% annual reduction avoiding halving disruptions
- ✓ **Requirement compliance**: All mathematical constraints satisfied exactly
- ✓ **Application-focused infrastructure**: Resources optimized for real-world application deployment
- ✓ Growth catalyst: 4x faster blocks + sustainable rewards = long-term stability

Bottom Line: The new PoUW v.2 model creates a sustainable, predictable economic framework that incentivizes infrastructure growth while funding continuous ecosystem development. Node operators benefit from increased earning frequency, and the entire network gains from the elimination of wasteful mining and introduction of useful work validation.

The math is simple: reward the infrastructure that powers the future.

22 Technical Overview Conclusion

This proposal outlines a comprehensive transformation of the FLUX blockchain that eliminates wasteful mining, empowers true decentralization through useful infrastructure, and creates sustainable economic incentives through a gradual 10% annual reduction model. The introduction of a dedicated development fund ensures continuous ecosystem growth while supporting innovative dual mining opportunities through FLUX Edge integration.

Key Economic Highlights:

- Maximum supply capped at 560M FLUX (reached in approximately 34 years)
- Smooth transition from Parallel Assets (2.45M remaining per chain at block 2M)
- Pure PoUW economy by 2028 with node-only reward distribution

• Deterministic block-based reductions every 1,051,200 blocks

By shifting from Proof-of-Work to Proof-of-Useful-Work v.2 with 30-second blocks and predictable reward structures, FLUX establishes itself as the premier decentralized compute network—true to its mission of being decentralized, democratized, and usable by anyone, anywhere.

The economic model provides infrastructure stability while avoiding the disruptive effects of traditional halving events, creating a sustainable foundation for long-term growth and enterprise adoption.

We invite the Flux community, node operators, developers, and partners to engage with this proposal and help shape the next era of Flux infrastructure. The proposal will be submitted as an xDAO proposal for community governance.

Document Version: 2.1

Updated: July 2025

Focus: Application-focused economics with clean progression ratios